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10 Abstract. Pharmaceuticals and household chemicals are neither fully consumed nor fully metabolized when routinely used by
humans, thereby resulting in the emission of residues down household drains and into wastewater collection systems. Since
treatment systems cannot entirely remove these substances from wastewaters, the contaminants from many households
connected to sewer systems are continually released into surface waters. Furthermore, diffuse contributions of wastewaters
from populations that are not connected to treatment systems can directly (i.e., through surface runoff) or indirectly (i.e.,

15 through soils and groundwater) contribute to contaminant concentrations in rivers and lakes. The unplanned and unmonitored
release of such contaminants can pose important risks to aquatic ecosystems and ultimately human health. In this work, the
contaminant fate model HydroFATE is presented which is designed to estimate the surface-water concentrations of
domestically used substances for virtually any river in the world. The emission of compounds is calculated based on per capita
consumption rates and population density. A global database of wastewater treatment plants is used to separate the effluent

20 pathways from populations into treated and untreated, and to incorporate the contaminant pathways into the river network. The
transport in the river system is simulated while accounting for processes of environmental decay in streams and in lakes. To
serve as a preliminary performance evaluation and proof of concept of the model, the antibiotic sulfamethoxazole (SMX) was
chosen, due to its widespread use and the availability of input and validation data. The comparison of modelled concentrations
against a compilation of reported SMX measurements in surface waters revealed reasonable results despite inherent model

25 uncertainties. A total of 390,000 km of rivers were predicted to have SMX concentrations that exceed environmental risk
thresholds. Given the high spatial resolution of predictions, HydroFATE is particularly useful as a screening tool to identify
areas of potentially elevated contaminant exposure and to guide where local monitoring and mitigation strategies should be

prioritized.
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1 Introduction

30 Compounds of emerging concern (CECs) are deemed to be an important source of risk due to their potential adverse
environmental impacts in the global water system (Gavrilescu et al., 2015; Noguera-Oviedo & Aga, 2016). For instance,
pharmaceutically active compounds such as analgesics, antibiotics, estrogens and antiepileptics which are in widespread use
globally, are not fully metabolized by the human body; thus, after their excretion and subsequent delivery into the wastewater
collection and treatment system, they may ultimately reach the aquatic environment (Aydin et al., 2019; Kiimmerer, 2009;

35 Pallietal., 2019; Patrolecco et al., 2018; Praveena et al., 2018). The ongoing release of these compounds and other household
chemicals through wastewater discharges often has unknown or poorly understood effects on the environment and human
health. Importantly, most wastewater treatment plants (WWTPs) are not specifically designed to remove these contaminants
before discharging effluents into receiving waterbodies, such as rivers, lakes, or oceans (Rizzo et al., 2019). As such,
wastewaters that are collected from domestic sources and delivered via sewer systems to a WWTP may be only partially — or

40 not at all — treated for such substances, thereby causing the WWTP to serve as a concentrated point source of contamination
of CECs into aquatic ecosystems (Daughton & Ternes, 1999; Petrie et al., 2015; Meyer et al., 2019). In addition to these point
sources, diffuse sources of contaminants from populations who are not connected to the sewage system can add to the pollution
of waterbodies (Lapworth et al., 2012). Risks associated with these contaminants are further exacerbated due to the limited
monitoring of their presence in wastewaters and receiving waterbodies into which they are discharged, and incomplete

45 assessment of their impacts downstream. In turn, this lack of information leads to poor regulatory oversight to safeguard the
health of aquatic ecosystems and that of populations that rely on them as a source of water (Daughton, 2014). Moreover, robust
estimates of current and future changes in water quality are needed to achieve sustainable management of water resources to
ensure clean and accessible water for all, as promoted by the Sustainable Development Goal (SDG) 6 (Strokal et al., 2019;
Tang et al., 2019; van Vliet et al., 2019).

50 When measurements of waterborne contaminants are unavailable or insufficient to make informed decisions regarding water
pollution arising from CECs, simulation models can be used instead to represent the hydrodynamic and water quality
conditions of the waterbody. Contaminant fate models (CFMs), also known as environmental exposure models or
georeferenced river models, focus on instream processes such as transport and degradation after the compounds’ release from
point and non-point sources. CFMs are specifically designed to predict realistic distributions of contaminants in a river

55 catchment (Aldekoa et al., 2016). Examples of models operating at regional to global scales include GREAT-ER (Aldekoa et
al., 2013; Feijtel et al., 1997), LF2000-WQX (Johnson et al., 2007), GIS-ROUT (Wang et al., 2000), PhATE (Anderson et al.,
2004), Mike 11 (Havng et al., 1995), WorldQual (Vo8 et al., 2012), ePiE (Oldenkamp et al., 2018), and GWAVA (Johnson et
al., 2013). These models require information about the hydrological characteristics of the catchment, consumption rates of the
chemical substances, and fate parameters that describe their instream decay. These requirements can limit the performance of

60 the models in regions where this information is unreliable or scarce (Grill et al., 2016).
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Water pollution caused by CECs is an issue of global concern, and water quality assessments must therefore be spatially
consistent and comparable across the world to be able to identify locations of high contaminant concentration and regional
trends in water pollution over time at a global scale. One of the challenges for global contaminant fate modelling is the lack of
spatial consistency in datasets for model inputs, especially in regions where data are insufficient to support detailed
65 assessments. (Kroeze et al., 2016; Strokal et al., 2019; Tang et al., 2019). For this reason, only a few global-scale CFMs models
exist, and those that do are typically limited to certain substances and relatively coarse spatial resolutions. For example,
GLOBAL-FATE (Font et al., 2019), which was created as an open-source down-the-drain model that includes lake and
reservoir modules as well as wastewater input information at a global scale, operates at a 7-km spatial grid. The Global TCS
model (van Wijnen et al., 2018) was created to simulate the transport of the antibacterial agent triclosan in global rivers at a
70  0.5-degree spatial resolution (i.e., corresponding to approximately 55-km grid cells at the equator).
To our knowledge, all currently existing global CFMs that require the quantification of the load of wastewater into the river
system use population density and national sanitation statistics as proxies to derive the necessary input data (e.g., Beusen et
al., 2015; Font et al., 2019; Hofstra et al., 2013; Mayorga et al., 2010; Strokal et al., 2019; Van Drecht et al., 2009; van
Puijenbroek et al., 2019; Williams et al., 2012). More specifically, calculations are based on the fraction of the population
75 connected to sewage systems per country. The main source of these statistics is the World Health Organization and the United
Nation Children’s Fund (WHO/UNICEF) Joint Monitoring Program (JMP) for Water Supply, Sanitation and Hygiene
(WASH), which provides regular global reports on drinking-water and sanitation coverage for tracking progress toward SDG
6 (WHO & UNICEF, 2021). This dataset allows for differentiation of wastewater treatment services between countries and
over time, but it does not account for spatial variability inside national boundaries, except for an assumed correlation with
80 population density. Herrera (2019) also points out several discrepancies between national-level data and JIMP-WASH data. In
addition, the dataset does not contain specific locations of wastewater discharge, which can have important implications with
respect to the distribution of contaminants in the river system.
Another important limitation of existing global water quality models is that they do not account for diffuse sources of pollution
arising from populations who are not connected to WWTPs or for the natural attenuation of contaminants that occurs along
85  their pathway from a source in the landscape through the soil or subsurface before reaching a waterbody. The contribution of
diffuse pollution can be substantial as revealed by the high aquatic concentrations of pharmaceuticals that have been measured
in countries with low rates of sanitation (Hanna et al., 2020; K'Oreje et al., 2012; Khan et al., 2013).
Grill et al. (2016; 2018) introduced a regional CFM that estimates the emission of household contaminants and their subsequent
transport in river networks at high spatial resolution (river network derived from 500-m grid cells). In this model, transport in
90 the river system is simulated using the global river routing model HydroROUT (Lehner & Grill, 2013). It has been applied
and evaluated with respect to its ability to model the fate of several pharmaceuticals in the Saint Lawrence River Basin, Canada
(Grill et al., 2016), the pharmaceutical diclofenac in India (Shakya, 2017), and human hormones in China (Grill et al., 2018).
These assessments included not only WWTPs as point sources but also accounted for diffuse sources of contamination from

populations not served by WWTPs while accounting for natural attenuation.

3



https://doi.org/10.5194/egusphere-2023-1590
Preprint. Discussion started: 25 July 2023 EG U
sphere

(© Author(s) 2023. CC BY 4.0 License.

95 In the present work, the CFM by Grill et al. (2016; 2018) is fully developed to operate at a global scale in order to: (1) serve
as a large-scale screening tool for assessing CECs from domestic sources, especially as a precursor for potential risk
assessments; (2) predict critical locations in river networks of potentially high aquatic contaminations; and (3) inform the
development and implementation of guidelines, regulations and mitigation strategies that aim to limit chemical pollution and
safeguard human and ecosystem health. The model enhancement and expansion are performed by integrating a global WWTP

100 database (HydroWASTE; Ehalt Macedo et al., 2022) and by distinguishing the pathways of contaminants from their population
source to the river network depending on whether they are treated (i.e., either in centralized WWTPs or in decentralized
facilities) or untreated (i.e., either from urban or rural diffuse sources). The capability of this global model, hereafter called
HydroFATE, is then evaluated by applying it to estimate the global distribution of the antibiotic sulfamethoxazole (SMX) in
the river network and by then comparing the resulting predictions of environmental concentrations to field measurements

105 reported in the literature. SMX was selected for this proof-of-concept case study due to the abundance of SMX field
measurements in surface waters reported globally and the broader availability of model input parameters in the literature
compared to many other CECs.

Given the broad goals, the main focus of the model development presented herein is to predict spatial variations in contaminant
exposure and to achieve a level of model performance where estimates of concentrations in the river network are generally

110  within an order-of-magnitude of reported field measurements, which is generally considered adequate for these types of
screening models (Johnson et al., 2008, Oldenkamp et al., 2018). HydroFATE, with its inherent global applicability due to its
reliance on pre-existing data in addition to its high spatial resolution, aims to provide a tool for scientists, practitioners, and

regulators to advance and focus their work, especially in regions where data are lacking.

2 Data
115 2.1 River and lake network

The various raster and vector layers representing the river network and catchment boundaries in HydroFATE were obtained
from the global hydrographic database HydroSHEDS (Lehner et al., 2008), which was derived from digital elevation data
provided by NASA's Shuttle Radar Topography Mission (SRTM) at 90 m (3 arcsecond) resolution. For the present study, we
used a derivative of this database in vector format, termed RiverATLAS (Linke et al., 2019), which was extracted at 500 m
120 (15 arcsecond) grid cell resolution and represents all rivers and streams where the average discharge exceeds 100 L s™! or the
upstream catchment area exceeds 10 km?, or both. The resulting global river network comprises 8,477,883 individual river
reaches with an average length of 4.2 km, representing a total of 35.8 million kilometers of rivers. Each river reach has an
associated contributing catchment with an average area of 15.7 km?.
Every river reach in RiverATLAS is provided with a series of precalculated hydro-environmental characteristics. From this
125 database, we used the long-term (i.e., 1971 to 2000) average naturalized river discharge in our study. The discharge estimates

were derived from the global hydrological model WaterGAP version 2.2 (Miiller Schmied et al., 2014), which were downscaled
4
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from their original resolution of 0.5° grid cells to the RiverATLAS resolution of 500 m using geostatistical techniques (Lehner
& Grill, 2013). In addition to annual average discharge estimates, minimum discharges (i.e., the lowest monthly flow value
within an average year) were also used for assessments under low-flow conditions.

130  To account for lake processes, a global database called HydroLAKES was used that provides the shoreline polygons of 1.4
million lakes with a surface area of at least 10 ha (Messager et al., 2016). All lakes in HydroLAKES are associated with
RiverATLAS via their lake pour points.

2.2 WWTP information

HydroFATE incorporates the locations and characteristics of wastewater treatment plants (WWTPs) as provided by the
135 HydroWASTE database (Ehalt Macedo et al., 2022). This database contains information on 58,502 WWTPs and provides
details for each on the actual location of the plant, the estimated outfall location, and attributes that are relevant for the purposes
of this study including: population served, treated-wastewater discharge, and level of treatment; i.e., primary treatment, such
as solids removal through mechanical cleaning and sedimentation; secondary treatment, which includes biological processes;
and advanced (tertiary or higher) treatment through extra filtration or chemical treatment. HydroWASTE was developed by
140  combining regional and national WWTP datasets and adding auxiliary information, including Open Street Map data, global
population data, and the high-resolution river network from RiverATLAS which was used to georeference WWTP outfall
locations.
With respect to its implementation in HydroFATE, of the 58,502 WWTPs in the database, the following were excluded (note
that some records fall into more than one category): (1) 1,682 WWTPs that were labeled as closed, non-operational,
145  decommissioned, projected, proposed, or under construction; (2) 379 WWTPs that have their outfall location outside of any
catchment that is associated with the river network of RiverATLAS (e.g., small islands); (3) 199 WWTPs that serve a
population of zero according to records; and (4) 10,196 WWTPs that have their outfall location within 10 km from the ocean
coast. The latter category was excluded to avoid overestimation of contaminant loads in coastal rivers as, given the locational
uncertainties in HydroWASTE, effluents from WWTPs with estimated outfall locations near the coast might, in reality,
150 discharge directly into the ocean. Of the remaining 46,425 WWTPs, some share the same estimated outfall location, and thus
were aggregated to the final number of 45,348 point sources of wastewater discharge into the global river network.
To account for small or decentralized wastewater treatment systems (DWTS) not included in the HydroWASTE database, such
as septic tanks, HydroFATE uses country-level statistics provided by the IMP-WASH program (WHO & UNICEF, 2021). For
the purposes of our study, sanitation data for each country were acquired for the year 2015 and the information termed

155  ‘Proportion of population using improved sanitation facilities (wastewater treated)’ was selected.

2.3 Population and urban area grids

Global gridded population distributions of the year 2015 were provided by the WorldPop dataset (WorldPop & CIESIN, 2018),

which was produced using a combination of census, geospatial, and remotely sensed data in a spatial modelling framework

5
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(Tatem, 2017). The WorldPop data were disaggregated from their original spatial resolution of 1 km to the same resolution as
160 the HydroFATE model (500 m) to allow for spatially consistent calculations.

Information on the location of global urban areas is determined in HydroFATE according to a land use classification derived

from remote sensing imagery. The dataset has a 500 m spatial resolution and is based on data from 2001 to 2002 from the

Moderate Resolution Imaging Spectroradiometer (MODIS) (Schneider et al., 2010). Although more recent urban area grids

exist today, this version was implemented during earlier model development stages and was kept to ensure model integrity.

165 3 Methodology

The regional CFM previously developed by Grill et al. (2016; 2018) simulates both the emission of household contaminants
and their subsequent transport towards and within the river system. Building on this earlier work, we here enhance and then
expand this CFM, hereafter termed HydroFATE, to the global scale. Figure 1 provides a conceptual representation of the
HydroFATE model. Contaminant emissions are determined based on population distribution, per capita consumption of the
170  modelled substance, human metabolism, and wastewater treatment removal or natural attenuation, depending on the pathway
from the source to the waterbody. Emissions from populations served by a WWTP or by smaller and decentralized wastewater
treatment systems (DWTS) are reduced in proportion to the treatment efficiency, which is based on the level of treatment, i.e.,
primary, secondary, or advanced (tertiary or higher), that is provided by the WWTP. Emissions arising from populations that
are not served by any type of wastewater treatment system are attenuated by a direct discharge coefficient depending on the
175  distance from the river network and whether the emission is located in a rural or urban area (Grill et al. 2018). The combined
loads from all pathways of contaminants inside the catchment boundaries of an individual river reach are aggregated as the
total local contaminant load of the reach. HydroFATE then employs the generic river routing model HydroROUT (Grill et al.,
2014; 2019; Lehner & Grill, 2013) to simulate the transport of the chemical substance in the river system, accumulating the
contaminant load downstream and accounting for instream decay and removal in lakes. Finally, the Predicted Environmental
180 Concentration (PEC) for every river reach is calculated by dividing the sum of the local total contaminant load plus the

incoming load from upstream reaches by the long-term river discharge of the reach.
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Figure 1. Conceptual representation of the contaminant fate model HydroFATE. The abbreviations ‘1, 2, or 3+ refer to the level of
treatment of each WWTP as primary, secondary, or tertiary/advanced, respectively. The dotted rectangle highlights steps involving

185

Modified from Grill et al. (2018).

contaminant pathways, i.e., processes developed or enhanced in the present study. See text for details and model description.

The methodologies used to simulate the amount of contaminant emissions and the routing of contaminant loads along rivers

and through lakes were previously described at the regional scale (Grill et al., 2016; 2018). While these basic processes do not

change when applied at the global scale, the model was expanded in the present study by incorporating novel global-scale

190

input data. Furthermore, the model was enhanced by introducing a spatially explicit differentiation of various wastewater and

contaminant pathways depending on the access of global populations to wastewater treatment (see dotted rectangle in Figure

1). Within each pathway, contaminants are removed following different removal efficiencies offered by treatment facilities, or

different levels of natural attenuation in the soil and subsurface.



https://doi.org/10.5194/egusphere-2023-1590
Preprint. Discussion started: 25 July 2023 EG U
sphere

(© Author(s) 2023. CC BY 4.0 License.

195 3.1 Determination of contaminant pathways

HydroFATE calculates contaminant emissions using contaminant-specific information (i.e., the annual per capita consumption
and the excretion fraction) and the number of people connected to the river system. This connection occurs through different
pathways depending on the sanitation system at the location in question. Using the global WWTP database HydroWASTE
(Ehalt Macedo et al., 2022), a population grid, an urban extent grid and additional sanitation data, six types of contaminant
200 pathways from populations into the river network were determined and incorporated into the HydroFATE model (see Figure
1). These are: point sources of treated wastewater from populations connected to WWTPs that provide (1) primary level of
treatment, (2) secondary level of treatment, or (3) advanced (i.e., tertiary or higher) level of treatment; (4) decentralized sources
of treated wastewater from populations not connected to a WWTP but served by DWTS; (5) diffuse sources of untreated
wastewater from populations in urban areas; and (6) diffuse sources in rural areas. The methods described in more detail below
205 assign a contaminant pathway for every pixel in a global population grid. Figure 2 illustrates an example of the resulting

pathway allocation in comparison to the population distribution at a metropolitan area and its rural surroundings.
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Figure 2. Example of the location of WWTPs and the population distribution (top panel) and the modeled contaminant pathway
allocation (bottom panel) for the Atlanta metropolitan area in the United States. The areas shaded in purple (bottom panel) show

210

the estimated service areas associated with individual WWTPs (black triangles). The populations residing in these areas are

connected to the river network as point sources based on the discharge locations of their respective WWTPs. The populations
residing in the orange areas (bottom panel) are identified as being associated with decentralized wastewater systems and are
connected to the river network as diffuse but treated sources within the catchment of each river reach. The populations residing in
the areas represented by shades of green (bottom panel) are associated with untreated wastewater contributions and are connected

215

to the river network as diffuse sources within the catchment of each river reach.
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First, populations are allocated to individual WWTPs. Although HydroWASTE provides details on the number of people
served by a WWTP, it does not specify the spatial distribution of the population served nor the service area associated with it;
that is, it does not provide explicit information that is required to spatially allocate the populations that are served versus those
not served by WWTPs (top panel of Figure 2). The service area of a WWTP depends on several local factors not easily
220 obtainable at the global scale, such as decisions of the administrative unit responsible for the facility, and the distribution of
underground pipes that transfer the wastewater to the facility. Studies have presented different approaches to associate the area
contributing to a WWTP. For instance, Keller et al. (2006) defined it as the nearest upstream contiguous urban area from the
WWTP discharge point within 2 km, estimating the population served by the WWTP based on the number of people in this
contributing area. However, the largest WWTP in their study served only 32,000 people (expressed as population equivalent),
225 whereas HydroWASTE contains almost 5,000 WWTPs that serve more than 100,000 people. Kapo et al. (2017) and Grill et
al. (2018) associated the WWTP service area to an administrative unit, but these studies were developed in countries where
the information on administrative units is widely available (i.e., USA and China, respectively), which is not typically the case
at a global scale.
To allocate explicit spatial population distributions to individual WWTP locations in HydroFATE, we developed a method
230 that follows the approach of Shakya (2017). This approach assumes that a WWTP can serve populations both upstream and
downstream as wastewater can be pumped and directed in complex underground sewage systems. It also assumes that the
service area of a WWTP can exceed the nearest contiguous urban area, with larger WWTPs typically serving larger distances
and populations. Shakya (2017) tested different buffer sizes (i.e., from 5 km to 30 km at 5 km increments) in India, to determine
the best-fit service area for different WWTP sizes by comparing the population within the buffer to the reported number of
235 population served. Since distribution and characteristics of WWTPs in different regions of the world can vary substantially,
we expanded upon this approach by using an iterative process instead of pre-defined buffer sizes.
The final WWTP allocation method assigns populations from the WorldPop population grid (WorldPop & CIESIN, 2018; see
Section 2.3) to the point locations of WWTPs using a ranking system as described in detail in Section S.1 of the supplementary
material. The method considers the distance of each population pixel from the WWTP, the size of the population served by
240 the WWTP, whether a population pixel is categorized as ‘urban’ or not, and whether candidate pixels are clustered in
contiguous areas. The settings and thresholds applied in this method were initially set to those reported by Shakya (2017) and
were then refined and finalized in a successive trial-and-error approach in which intermediate results were mapped, visually
inspected for plausibility, and statistically tested to verify whether they led to further improvements. The final allocation
procedure assigns population pixels to individual WWTPs until the reported total of served population of each WWTP was
245  reached, or until maximum distance thresholds are exceeded. Once the allocation is completed, the contaminant pathway from
each allocated population pixel to the river reach is defined by the WWTP discharge location and can be separated into one of
three treatment levels (primary, secondary, or tertiary/advanced) as specified in HydroWASTE (purple colors in bottom panel

of Figure 2).
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Besides explicit WWTP pathways, HydroFATE also accounts for sources of potential contamination from decentralized
250 wastewater treatment systems (DWTS) that are not included in HydroWASTE, such as household septic tanks. To this end,
for every country, the difference was calculated between the aggregated population served by WWTPs according to
HydroWASTE and according to the global database on sanitation JMP-WASH (WHO & UNICEF, 2021). If IMP-WASH
reported higher numbers of population served, this difference was assigned successively to the pixels with highest population
numbers within the respective country borders that have not been allocated to WWTPs. The wastewater pathway type of these
255  pixels thus defaults to that of DWTS (orange color in bottom panel of Figure 2) and include a specific removal efficiency. In
the absence of explicit information, it is assumed that after DWTS treatment the effluent discharge directly enters the surface
drainage system at the pixel’s location within a catchment and then flows to the catchment’s associated river reach.
Finally, all remaining population pixels that were not assigned in any of the previous steps were considered to be diffuse
wastewater sources and were classified as “untreated’ (green colors in bottom panel of Figure 2). They were separated between
260 rural and urban using an urban area grid (see Section 2.3). All population pixels classified as diffuse sources thus have a defined
contaminant pathway that goes from the pixel’s location within a catchment to the catchment’s associated river reach. The
contaminant removal along this pathway in soils and the subsurface is determined through distinct urban vs. rural attenuation

functions.

3.2 Incorporation of contaminant pathways into HydroFATE

265 The results of the various population allocation steps described above are used as inputs into the HydroFATE model. The total
input of contaminants from treated pathways into each river reach is the sum of the contributions from all WWTPs (i.e., point
sources) releasing wastewater into that reach and the contribution from populations served by DWTS (i.e., decentralized

sources):
e .
Ly = <er (PWWTP,i x (1 - %:Zj)) + (an Powrsm X (1 - %))) X Leap o

270  where Ly, is the total load of the contaminant in river reach r originating from treated pathways in the reach catchment ¢
contributing to (g day™); Pywrp, is the population (persons) served by each WWTP i connected to river reach r; Ppyrs,m 1S
the population (persons) served by DWTS from pixel m inside catchment c¢; L.qyp, is the per capita load (excreted) of the
contaminant (g cap™ day™); and ey rp, j and epyrg are the removal efficienc